
The Thesis team asked us to review and audit the Tally protocol. We looked at the code and now publish

our results.

Scope

We audited commit 556851a12b0d150a00782b1b2b504af6cca454c0 of the tallycash/tally-

contracts repository. In scope are the smart contracts in the contracts directory. However the test

directory was deemed out of scope.

Before overviewing the system and its privileged roles, and moving to a full list of issues found during

the audit, some introductory remarks about the project's current status are in order.

Project status

We audited an early version of the Tally project that is a work-in-progress and not yet ready for

production. In view of the project's maturity, this first security audit round should be taken as the initial

step forward in the way to reach the highest levels of code quality and robustness demanded by

systems intended to handle large sums of financial assets. We identified numerous opportunities for

improvement in this code which are highlighted throughout the report. We note that there is no

accompanying documentation, so there is little to go by for stakeholders to understand the facets of

this system. This project will require not only specific patches in several code segments, but also efforts

in terms of testing and the redesign of how components are architectured. While these issues could be

considered symptoms of the inherent difficulty of building a sustainable complex financial system, by

no means are they to be taken lightly. Further security review of the entire protocol are in order, which

along with our recommendations in this report, should help bring the project to a production-ready

state.

System overview

The Tally protocol consists of various Defi services bundled into a single wallet, including yield farming

and swapping against liquidity pools. The smart contracts defining this protocol are to be launched by

users in tandem with a Defi enabled wallet for Ethereum, which will be the main interface to these

services, but the wallet itself is not in scope.

Tally token

The Tally token and governance are forked from Compound's COMP token and corresponding

GovernorBravo, with some significant modifications. One of the main additions to the Tally token is a

mechanism that restricts accounts in their ability to transfer tokens to control distribution during the

bootstrapping process. These account restrictions can then be removed permanently either individually

or globally by a privileged role. The second major addition to the Tally token and its governance is a

refactoring of their constructor logic to allow for a second initialization step to be more compatible with

their deployment mechanism. The token will be constructed with an initial supply which can later be

increased through minting by a privileged role. Like the COMP token, much of the utility of Tally is

derived from it being used to delegate votes in the governance process.

Having forked from Compound, the Tally's GovernorBravoDelegate uses the same values of

governance parameters as the Compound's GovernorBravoDelegate. The parameters include proposal

threshold, voting period, voting delays and the number of votes needed to reach quorum. We expect

these parameters to be altered depending upon how the Tally team envisions the distribution of Tally

tokens. For example, if the distribution is slow, the current high value of quorumVotes could prevent

the system from reaching a quorum.

Deployment mechanism

The effort in bootstrapping the Tally protocol through deployment of its smart contracts is to be

distributed amongst users. The TallyDeployer contract defines a mechanism incentivizing user

participation in this process, and ensuring proper initialization. The design of this mechanism leverages

the deterministic addresses provided by the EIP-2470 singleton factory to properly map deployer

incentives and to facilitate discoverability. Tally protocol contracts to be deployed in this manner are

"whitelisted" by hardcoded assignments of contract rewards to corresponding target deployment

addresses. Even the TallyDeployer itself will be deployed in this manner where the deployer will

receive a corresponding reward in Tally token.

Hunting Grounds

The Hunting Grounds are incentivized pools that deploy their capital to other yield opportunities. The

featured Hunting Ground is the Unipool Hunting Ground which deploys its underlying assets to another

Unipool to earn rewards. Users can stake and withdraw the featured token of the pool, and can harvest

accumulated rewards in a reward token. These Hunting Grounds are to be deployed by the

TallyDeployer, however as of this audit such Hunting Grounds are not yet "whitelisted" by the

TallyDeployer.

Swapping

The Swap contract enables users to fulfill 0x quotes via its external swapByQuote convenience function.

For each swap a swapFee is charged and the accumulated fees can only be swept by the

feeRecipient which is set by governance. The Swap contract is to be deployed via a delegate pattern

from governance, not by the TallyDeployer.

Treasury Vesting

The TreasuryVester contract is responsible to put an amount Tally tokens under a vesting schedule to

a specific recipient. This can be deployed by any user with the right input parameters and must be

funded with vestingAmount of Tally tokens after deployment.

Airdrop of Tally tokens

The ExpiringMerkleDistributor contract aims to manage the airdrop of Tally tokens through a

Merkle distribution. It works by hashing airdrop participants together in a Merkle tree and to publish the

merkle root of it in the smart contract. User can claim their airdropped tokens by providing Merkle

proofs checked against the root. Additionally, this contract has an expiration time which enforces the

users to claim their airdropped tokens before endTime is reached. Finally, the contract is also Ownable

and the owner is the address that deploys it. After the expiration, any leftover tokens are transferred to

the owner by the privileged clawBack function.

Roles and their security assumptions

The Tally token has a minter and an unpauser which are both set to the msg.sender of the

initialize function. The minter can mint Tally, removeAccountRestriction 's, and

disableTransferRestriction globally. The unpauser has all the privileges of the minter with the

exception that it cannot mint Tally. Both of these roles can reassign their role to another account. It's

the intent of the system design that the TallyDeployer will have these roles since it is to call

initialize, however it is noted in the report that isn't necessarily the case.

The Hunting Grounds are Ownable where the owner has exclusive privileges to pause, set fees, and

deallocate the underlying tokens, as well as toggle whether only EOA's or all accounts can stake. There

is also a rewardDistribution role inherited from Synthetix's Unipool set by the pool owner, which is

the only account able to notifyRewardAmount.

The Swapping pools are EmergencyPausable meaning they can be paused or unpaused only by the

timelock or emergency governance.

The governance itself contains a role emergencyGovernance which can only be set by the timelock.

All external code and contract dependencies were assumed to work correctly. Additionally, during this

audit, we assumed that the system administrators are available, honest, and not compromised.

The code base has been audited during the course of four weeks by three auditors and here we present

our findings.

Critical severity

[C01] Admin is never set

The TallyDeployer contract is meant to be the one that users will need to interact with to deploy and

initialize contracts by the protocol. This is because the system is meant to be deployed by users. To do

so, the Tally team forked and modified other protocol contracts to adapt them to their intentions.

Specifically the governance module, forked from Compound, has been adapted by removing some

automations which are now manually triggered.

Specifically, the GovernorBravoDelegate, from which the TallyGovernorBravoDelegate contract

extends, in the original Compound version, had a requirement for the admin to be the msg.sender,

while Tally versions require admin to be unset at initialization time. GovernorBravoDelegate, and

so TallyGovernorBravoDelegate works behind a proxy that is the actual storage layer, the

GovernorBravoDelegator, which is a fork of Compound but with some modifications. The original

Compound proxy had admin assignment and initialization in its constructor, while the forked version of

Tally removes this automation, to let the initialize function to be called by a user later. For this,

the admin assignment in the proxy's constructor has been removed, and placed instead inside the

initialize function, but a bug has been introduced.

The admin is set to be the timelock, the state variable which isn't initialized until after the admin

assignment. This way the admin is set to be the zero-address. It appears to be the intent of the

developer that instead of timelock, the admin meant to be set to the timelock_ passed input

parameter instead.

This has catastrophic consequences in the system since:

admin can't be changed anymore since, _setPendingAdmin can't be called.

_setProposalThreshold, _setVotingPeriod and _setVotingDelay can't be called anymore.

Consider setting the admin parameter to the timelock_ variable to resolve this issue.

•

•

[C02] Anyone can change governance implementation

As mentioned in [C01], because of a bug in GovernorBravoDelegate contract, the admin parameter

ends up being the zero address. Apart from the already mentioned issue and its consequences, there is

a related important issue that deserves its own description.

The GovernorBravoDelegator contract, being the proxy and storage layer for the

GovernorBravoDelegate contract, has the _setImplementation function which can only be called

either by the admin or by anyone when admin == address(0).

This means that, at any moment, anyone is able to call the _setImplementation function and change

the implementation address of the GovernorBravoDelegate contract, potentially to a contract that

executes malicious code.

The fact that the _setImplementation function is having the possibility to be called when admin ==

address(0) is because of initialization purposes, and the fix to the already mentioned issue should

solve this issue too.

Alternatively, consider redesigning the _setImplementation function to not use the null admin

condition to correctly process a call.

[C03] Contract deployments can be "jacked"

The TallyDeployer contract is an intermediary for deployment and initialization of known Tally

contracts where the deployer is rewarded in Tally token. The first instance of a contract being deployed

in this manner is the Tally token itself, whose deployment is triggered within the TallyDeployer

constructor. The TallyDeployer is expected to be deployed by the EIP-2470 singleton factory, and the

tx.origin will receive the deployer reward. The other instances are the TIMELOCK, DELEGATOR, and

TallyGovernorBravoDelegate whose deployments are triggered within the TallyDeployer deploy

function. In this latter case the msg.sender will receive the deployer reward.

This deployment mechanism leverages the deterministic addresses provided by the singleton factory to

map target contract deployment addresses to contract rewards, and aid in discoverability regardless of

who the deployer is. The singleton factory's underlying create2 call is a deterministic function of the

caller, salt, and initialization bytecode which includes set constructor parameters. A subtlety that must

be noted is that the caller considered by the create2 function is the msg.sender of the create2

function. In the case of the singleton factory, the msg.sender to the create2 function is the singleton

factory itself. This means that for a given salt and initialization bytecode, the singleton factory will give

the same address regardless of which contract or EOA calls it. A final thing to note is that create2 will

fail if the target address already contains deployed contract code, so a given deployment can only

happen once.

The singleton factory can be called directly by any account with the salt and initialization bytecode

corresponding to any of the target deployments of the TallyDeployer contract. This way a target

address that hasn't yet been deployed can be "jacked" by a deployment circumventing the

TallyDeployer contract.

There are many issues stemming from this. The least severe of which is that a jacked deployment will

never pay its corresponding deployer rewards. But more severe problems come from the fact that

initialization of these contracts is now outside the TallyDeployer 's control:

The msg.sender calling initialize on the Tally token is set as its minter, and pauser, and

has the totalSupply minted to it. The intended system design is so that the TallyDeployer will

have these roles and this balance since it calls initialize within the same transaction where it

deploys the Tally token. But, a malicious actor can frontrun construction of the TallyDeployer

by deploying the Tally token through the singleton factory so that within the same block,

anyone's initialize transaction could be mined and they would seize full control of the token.

Also note that since the Tally token address is jacked, the constructor of the TallyDeployer

will now always revert since it checks that the TALLY address does not contain deployed

bytecode. So this attack locks out the TallyDeployer from the Tally protocol.

The TallyDeployer has special logic initializing the DELEGATOR along with its deployment. This

initialization sets the timelock, tally token, and other important parameters. Again, a malicious

actor can deploy the DELEGATOR through the singleton factory, exposing the initialize

function to be called by anyone. This way, the timelock, token, and other critical parameters can

be set to malicious values. This can have many devastating effects on the system. For instance,

if an attacker picks the timelock to be under its control it can arbitrarily manipulate the

queueing and executing of proposals in governance.

Consider hardcoding parameters that are otherwise set by initialization functions of contracts deployed

in this manner. Moreover, being able to circumvent the TallyDeployer functionalities, is an intrinsic

outcome of the chosen design, for this, we recommend reviewing the pattern chosen and decide to

either ease the requirements on the functionality or to strengthen the design to reflect the real intents

of the protocol.

[C04] Deployment scheme blocks core Tally token
functionality

The ERC20 compliant Tally token is the governance token in the Tally protocol. The Tally token is a

fork of Compound's COMP token, and both tokens are purpose-built for their respective governance

protocols. In fact, the Tally protocol's governance is also forked from Compound's GovernorBravo, so

the design choice in forking the COMP token comes naturally.

The Tally token does have additional functionality not present in the COMP token.

The main addition is a mechanism to restrict accounts' ability to exchange Tally. This is implemented

simply as a check of the spender in the global unrestrictedAccounts mapping within the transfer

and transferFrom functions. All accounts are initialized as being restricted in this way, except for the

minter, whom along with the unpauser, can call the removeAccountRestriction function on behalf of

an account. There is also a disableTransferRestriction function callable only by the unpauser that

when called, will permanently disable this mechanism, allowing all accounts to transact tokens freely.

•

•

Another addition is that the Tally token has an initialize function that must be called in the same

block that the contract is constructed. Here, the minter and unpauser roles are set to be the

msg.sender, the minter is set to be an unrestricted account, and the minter is given the balance of

the totalSupply.

The Tally token is to be deployed by the TallyDeployer contract by way of the EIP-2470 singleton

factory. This deployment will in fact occur within the constructor of the TallyDeployer which will

immediately call the initialize function on the newly deployed Tally contract. This means that the

TallyDeployer will be assigned the minter and unpauser roles of the Tally token since it is the

msg.sender of Tally 's initialize function. Lastly a deployment reward is transferred to the

tx.origin of the deployment of the TallyDeployer. We note here that there are currently two holders

of Tally token: the TallyDeployer and the recipient of the deployment reward.

Aside from the aforementioned initialization and transfer, the TallyDeployer does not expose any

methods directly or indirectly of the Tally token contract.

This means that the TallyDeployer cannot transfer Tally token to any other accounts since the

transfer and transferFrom methods are not available. For any account besides the TallyDeployer

holding Tally, which we know is solely the reward recipient above, their ability to transfer Tally is

restricted and cannot be resumed since both the removeAccountRestriction and

disableTransferRestriction functions are inaccessible to the TallyDeployer.

From here we see Tally cannot be minted, the unpauser and minter cannot be set, Tally can't be

transferred since all these functions are inaccessible to the TallyDeployer and the reward recipient is

restricted. A final interesting note is that only the reward recipient can delegate votes in the

governance process since the only other holder is the TallyDeployer contract, whom we know now, is

incapable of interacting with the Tally token.

Within their test suite, the Tally team tests some functionality of both the Tally token and

TallyDeployer as they work together, but these tests are not comprehensive enough and do not

faithfully simulate the bootstrapping of Tally's economy.

Consider implementing a wrapper to the TallyDeployer that properly exposes the functions of the

Tally contract. Furthermore, consider fortifying this implementation with a comprehensive test suite

taking into consideration the subtleties of the context of the calls, and a more thorough simulation of

bootstrapping this economy.

[C05] Withdrawal from hunting grounds does not account
for reward update

The HuntingGround contract inherits StakedTokenRewardPool contract. When a user stakes through a

hunting ground, the stake function in StakedTokenRewardPool contract is invoked. This parent stake

function calls the updateReward modifier which updates the values of reward per token and the reward

accumulated by the user.

Similarly, if a user interacts with the withdraw function of the StakedTokenRewardPool, the

updateReward modifier is called and respective values are updated. However, the same does not

happen if the user withdraws from the hunting ground.

The withdraw function in the HuntingGround contract overrides the parent withdraw and does not

invoke it. Additionally, this function does not account for the update of rewards. Therefore, every time a

user interacts with this withdraw function, they miss out on some reward, since rewards accrued by

their account are not updated.

Moreover, this also impacts the reward for all the users. Since the updateReward is not called, each call

to this withdraw function would miss the increment to rewardPerTokenStored, which affects all the

users interacting with the hunting ground.

To sum it up, the more users withdraw from the hunting ground, the lesser rewards are accrued to all

the users since reward per token is not incremented the way it should.

This problem can be solved if the user calls getReward function prior to withdrawing. However, since

there is no prerequisite to calling withdraw at the moment, any user can interact with it and mess up

with the rewards.

Consider changing the design of withdraw function to either adding prerequisite to calling the function

or accounting for the proper update of rewards.

[C06] Withdrawal fee is locked inside HuntingGround

The users, who interact with the hunting grounds, need to pay a cut of their rewards as the

performanceFee and a portion of their wrappedToken as the withdrawalFee. The HuntingGround

contract defines a groundFees mapping which keeps a track of these fees paid by each user account.

While the groundFees is correctly tracking the collection of performanceFee, it does not track the

withdrawalFee paid by an account.

The sweepFees function is defined in the HuntingGround contract which, when called, transfers an

amount of accrued fees to the owner of the HuntingGround contract. Within this function, before the

fee is transferred, the input amount is deducted from the groundFees. Since there is no mapping of

wrappedToken tokens in groundFees, this subtraction will underflow thereby reverting the function call

and locking the withdrawalFee in the HuntingGround contract.

Consider implementing the mapping of withdrawalFee within the withdraw function.

High severity

[H01] Hunting ground fees can be stolen

The withdraw function of the HuntingGround contract allows a user to make a request to withdraw

"amountUnderlying" of wrappedToken from the hunting ground. This withdraw function is available in

the UnipoolHuntingGround contract as well since it inherits the HuntingGround contract. The

HuntingGround accumulates fees in the wrappedToken and the tokensEarned by taking a cut of

transfers within the withdraw and getReward functions.

The routine of the withdraw function first has a preWithdraw step, then checks the HuntingGround

has a balance in excess of the requested amount, and finally transfers the wrappedToken to the

msg.sender while skimming its fee.

The preWithdraw makes an attemptToDeallocateUnderlying which, as implemented by the

UnipoolHuntingGround, calls the withdraw method on its own IStakingTokenRewardsPool farm

within a try catch block. This attemptToDeallocateUnderlying is designed to endow the

HuntingGround with the necessary liquidity in wrappedToken to make the final transfer to the

msg.sender of the withdraw routine.

The problem is as follows: If the calling of the withdraw method of the farm fails within the try catch

block, the attemptToDeallocateUnderlying will return false. This boolean is also the return value of

the preWithdraw function. But within the withdraw function of the HuntingGround, the return value of

preWithdraw is never checked. This way, the transfer to the msg.sender of the amount less fees will

be deducted from the HuntingGround 's balance which, in this case, is not supplemented with a

withdraw from the farm but only consists of the accumulation of its own fees.

The farms to be used in these hunting grounds are expected to be outside this codebase, but are not

yet known to be established. So analysis of their likelihood to fail within the try catch block of the

attemptToDeallocateUnderlying is not certain. But it could be the case that a farm is chosen where

a user can engineer circumstances where withdraw deducts from the accumulated fees without being

supplemented from the farm.

Consider programming defensively by checking and reacting to the return value of the preWithdraw

function within the withdraw routine.

[H02] Hunting-grounds fees can be stuck in owner

The Ownable HuntingGround contract accumulates fees by taking a cut of each earnedAmount when a

staker collects their rewards by calling the getReward function. These fees are accounted for by

incrementing the groundFees mapping for a given tokensEarned within the getReward function and

represents the HuntingGround balance in these tokens in excess of what is transferred to the staker.

The HuntingGround contract exposes an external sweepFees function, callable by any account, that

will transfer the groundFees for a given token to the owner of the HuntingGround contract.

The Hunting Grounds of the Tally protocol are intended to be deployed by the TallyDeployer 's

deploy mechanism. The TallyDeployer 's deploy mechanism deploys whitelisted contracts using

EIP-2470 singleton factory. In using the singleton factory to deploy contracts, the msg.sender

considered within the context of the deployed contract's constructor will be the caller of the create2

function, which in this case is the singleton factory. Recall the HuntingGround is Ownable and does not

at any point transferOwnership to any other account. This means that the msg.sender constructing

the HuntingGround, the singleton factory, will be the owner and thus the recipient of the

HuntingGround 's swept fees.

Consider adding to the HuntingGround 's constructor logic a transferOwnership to an administrative

account within the protocol which itself has capabilities to withdraw or transfer funds it receives.

[H03] Tokens with uncommon decimals lead to incorrect
rewards

The HuntingGround contract is distributing to the stakers all accrued rewards, from all the tokens in

which they participated. This is done in the getReward function.

To do so, the function first calculates the rewards earned in rewardTokens, then it uses them to

calculate the earnedAmount of each token and, after subtracting some fees, it sends the leftover of

each token to the msg.sender.

The problem is that the contract, when calculating earnedAmount, is implicitly assuming that each

token in the tokensEarned array are all scaled to 18 decimals since rewardToken is used in the first

place.

The fact that the rewardToken has 18 decimals is itself an assumption, since it is not checked to be so

when rewardToken is initialized, but it's assumed to be so when performing internal calculations.

If some of the tokens in the tokensEarned array is having a different number of decimals, or if the

rewardToken itself doesn't have 18 decimals, rewards calculation can give unexpected results, making

accounting wrong and lastly giving more or less rewards to users depending on the exact number of

decimals.

Consider explicitly informing users, through the docstrings or documentation, about the process of

setting farming tokens, taking into considerations the number of decimals but also uncommon token

behaviours, like fees deducting tokens like USDT that may lead to incorrect and unexpected amounts

being transferred.

Moreover, given the tight dependency between rewardToken and each one of the tokensEarned,

consider explicitly calling the decimal public function of a standard ERC20 token and require to the

returned value to be 18.

Medium severity

[M01] Event issues

The following functions of the Tally contract do not emit relevant events after executing sensitive

actions:

The disableTransferRestriction function which disables all transfer restrictions on the token,

and cannot be re-enabled.

The removeAccountRestriction function removing transfer restrictions on an account.

The setUnpauser function which updates the pauser role to a new address.

Also, many events defined in the contracts have no indexed parameters:

The Claimed event of the IMerkleDistributor interface.

The events defined in the HuntingGround contract.

The events defined in the Swap contract.

Many of the events defined in the GovernorBravoInterfaces.sol file.

Consider emitting events after sensitive changes take place, to facilitate tracking and notify off-chain

clients following the contracts' activity. These events should be defined with indexed event parameters

to avoid hindering the task of off-chain services searching and filtering for specific events.

[M02] Lack of input validation

There are many examples in the code base of lack of input validation. Some examples are:

On line 174 of Tally contract, minter_ is not checked to not be the zero address. The mint

function can forever be locked in the case that the minter is set to an inaccessible address.

On line 208 of the Tally contract, the rawAmount is not checked to be different from zero.

On line 54 of the TallyGovernorBravoDelegate contract is not checking whether the

newEmergencyGovernance_ is not the zero address.

On line 189 of Tally contract, the unpauser_ parameter is not checked to not be the zero

address. Since there is also a check that msg.sender == unpauser the unpauser role can

forever be lost to the zero address. The disableTransferRestriction function explicitly sets

the unpauser to the zero-address, so it is best that such a drastic setting is only done in this

single disableTransferRestriction function and not accidentally in the setUnpauser

function.

•

•

•

•

•

•

•

•

•

•

•

On line 176 of the HuntingGround contract, the amount is not checked to be less than

groundFees[token], this would revert the subtraction in line 177 with no informative messages.

The constructor of the MerkleDistributor contract is not checking whether the token_ and the

merkleRoot_ parameters are non trivial.

The constructors of the Unipool.sol contracts are not checking whether their input parameters

are non trivial.

The constructor of the Swap contract does not check that swapFee is within any bounds, while

the setSwapFee function does. For consistency the constructor should check swapFee against

the same bounds.

The constructor of the ExpiringMerkleDistributor contract is not checking that startTime is

a non trivial value or not a value in the past. If a value in the past is accepted, consider properly

describing it in the docstrings.

Even though this issue does not pose a security risk, the lack of validation on user-controlled

parameters may result in erroneous transactions considering that some clients may default to sending

null parameters if none are specified.

[M03] Pending Admin can be set to address(0)

The system is meant to never lose the admin role in the governance contracts, so safety measures

have been put in place preventing it from being assigned to address(0). This is clearly the intention

behind the docstrings in lines 553-554 of the GovernorBravoDelegate contract.

The reason is that if the admin would ever be set to address(0), anyone would be able to call the

_setImplementation function of the GovernorBravoDelegator contract, the proxy and storage layer

behind the governor contract, because it would pass the check in line 22.

But, as implemented, the actual admin can call the _setPendingAdmin function of the

GovernorBravoDelegate contract and set the pendingAdmin to the zero address.

This doesn't pose a security issue, since the _acceptAdmin function requires that the msg.sender is

the pendingAdmin and is not the zero address. Even without that safeguard, it is highly improbable that

any entity owns the private key of the zero address that would call this _acceptAdmin function.

The issue is that the checks for msg.sender != address(0) in lines 556 and 577 are meaningless,

since the zero address effectively can't call this contract. What the checks should state is that

newPendingAdmin != address(0) for line 556 and the second check in line 577 should be removed.

Even if this doesn't pose a security issue on its own, it's clearly a bug and a mismatch with the intended

behaviour. Consider fixing both require statements according to the intended functionality.

•

•

•

•

•

[M04] Staking is possible before the call to notifyRewardAmount

The StakedTokenRewardPool contract defines the lastUpdateTime, periodFinish and rewardRate

parameters that are initialized in the notifyRewardAmount function and are used to calculate a user's

generated rewards.

If these parameters are not set, users will not generate any reward on their stakes, since any call to the

rewardPerToken function will multiply the stored value of reward per token by the null rewardRate

parameter, thereby making the accrued reward zero.

In an edge case scenario, where the users can call the stake function independently before any call is

made to the notifyRewardAmount function, the staking will not accrue rewards.

Consider restricting the stake function to be called only if the rewardRate has been initialized, making

sure that this change doesn't interfere with the expected design and behaviour of the contract.

Low severity

[L01] Array length can overflow loop's index parameter

The for loop within the getReward function of the HuntingGround contract has an index of type uint8

and iterates over the tokensEarned array.

In the case that the length of the tokensEarned array is greater than type(uint8).max, the index will

overflow. Although Solidity 0.8.0 will catch this overflow, the loop will eventually revert without any

informative message.

Consider checking that the length of the array is not greater than type(uint8).max or changing the

type of the index parameter to iterate over bigger array lengths. Alternatively, consider manually

catching the overflow and revert with an informative explicit message.

[L02] Governance parameters are unchanged from
Compound governance

The parameters hardcoded in GovernorBravoDelegate contract are identical to the Compound

governance contract. While the value of most of these parameters depend on the type of distribution

that Tally team envisions for the governance tokens, the name of this contract is initialised to Compound

Governor Bravo.

Since this contract has been modified, to avoid any confusion, consider changing the name to reflect

that it belongs to the Tally project and is not the same as Compound's.

[L03] Empty try block

The attemptToDeallocateUnderlying function in the UnipoolHuntingGround contract contains an

empty try block and the logic to follow from the successful try is written after the entire try/catch

block.

Programmatically, this implementation is equivalent to that of convention, but could affect readability

or maintainability. Consider implementing the success of try statement inside the try block.

[L04] HuntingGround contract can't be unpaused

The OpenZeppelin's Pausable contract provides the _pause and _unpause internal functions, along

with some modifiers that prevents other functions from being called when the system is either paused

or unpaused. Since _pause and _unpause are internal functions, the child contract that inherits from

them must implement wrapper functions to call them.

The HuntingGround contract inherits from the OpenZeppelinâ€™s Pausable contract and implements

the pause function that prevents users from calling the stake function of a paused system. However,

there is no implementation for the _unpause functionality.

Since this is a design choice of Tally team, consider properly documenting this immutable behaviour to

keep the stakeholders informed.

[L05] Incorrect error messages

Some error messages in require statements are technically incorrect:

L64 of Swap.sol

L125 of GovernorBravoDelegate.sol

The wording of these error messages do not acknowledge the boundary of the interval being checked

and are thus technically incorrect.

Error messages are intended to notify users about failing conditions, and should provide enough

information so that the appropriate corrections needed to interact with the system can be applied.

Uninformative or incorrect error messages greatly damage the overall user experience, thus lowering

the system's quality. Therefore, consider not only fixing the specific issues mentioned, but also

reviewing the entire codebase to make sure every error message is informative and user-friendly

enough. Furthermore, for consistency, consider reusing error messages when extremely similar

conditions are checked.

•

•

[L06] initialProposalId is never set

The _initiate function of the GovernorBravoDelegateStorageV1 contract from which the Tally

protocol forked their GovernorBravoDelegate contract was the only function to initialize the

initialProposalId to a value.

Since this function has been removed, the initialProposalId parameter, together with the second

check of the require statement in line 335, are useless now.

The purpose of this parameter was to enforce continuous values over proposal IDs across governance

upgrades but the initial Tally governance will not need this parameter. However, if an upgrade is

performed, this parameter, together with the appropriate value checks where needed, can be included

in the upgrade itself.

To increase readability and have a cleaner code base, consider removing the initialProposalId and

the mentioned check in the require statement.

[L07] Constant not declared explicitly

There is an occurrence of literal value in TallyDeployer contract that is not declared explicitly. Literal

values in the code base make the code harder to read, understand and maintain, thus hindering the

experience of developers, auditors and external contributors alike.

Developers should define a constant variable for every magic value used (including booleans), giving it

a clear and self-explanatory name. Additionally, for complex values, inline comments explaining how

they were calculated or why they were chosen are highly recommended. Following Solidity's style

guide, constants should be named in UPPER_CASE_WITH_UNDERSCORES format, and specific public

getters should be defined to read each one of them.

[L08] Missing docstrings

Some of the contracts and functions in the code base lack documentation. Additionally, the docstrings

in some of the contracts do not follow the NatSpec, for example, the EmergencyGovernable contract

uses /// for multiple line comments instead of /** ... */. This hinders reviewers' understanding of

the code's intention, which is fundamental to correctly assess not only security but also correctness.

Additionally, docstrings improve readability and ease maintenance. They should explicitly explain the

purpose or intention of the functions, the scenarios under which they can fail, the roles allowed to call

them, the values returned and the events emitted.

Consider thoroughly documenting all functions (and their parameters) that are part of the contracts'

public API. Functions implementing sensitive functionality, even if not public, should be clearly

documented as well. When writing docstrings, consider following the Ethereum Natural Specification

Format (NatSpec).

[L09] Multiple Solidity versions in use

Throughout the code base there are different versions of Solidity being used. For example, the

TallyDeployer contract allows compiling with any version greater than 0.8.0 whereas the SafeMath

library allows compiling with versions greater than 0.5.16.

Additionally, Timelock and TreasuryVester contracts are also using an older solidity version (^0.5.16).

The Timelock contract calls a function that is deprecated in the newer solidity versions.

To avoid unexpected behaviors, all contracts in the code base should allow being compiled with the

same Solidity version.

[L10] Overloaded functionalities

There are some parameters which are used for multiple purposes, overloading their initial one.

Parameters should have clear names that reflect their functionality and they should have only one

purpose inside the codebase.

Not following these guidelines, makes the codebase harder to read and understand, but it is also prone

to errors and for this we don't recommend adopting it.

Specifically, in Tally contract:

the unpauser global variable is used to whitelist users for transfers, but when unset, it is also

used to signal that transfer restrictions are disabled.

the balances[address(0x0)] variable is used to force construction and initialization to happen

in the same block, but it is also a mapping used to track balances.

Consider defining one single variable for each of the mentioned functionalities, without overloading the

existing one.

[L11] Tally doesn't inherit the appropriate interface

Within the deploy function of the TallyDeployer contract the TALLY_TOKEN is used as second

parameter to the DELEGATOR 's initialize function. This initialize function sets its global variable, comp, to

be the value of this second parameter cast as type CompInterface.

The current state of the code has the Tally token correctly implementing the CompInterface in that

its getPriorVotes function conforms to the CompInterface 's corresponding function signature. But

any updates to the codebase around the Tally token's getPriorVotes function could introduce bugs

where its function signature differs from that of the CompInterface. This would affect its use in the

governance process such as submitting proposals and casting votes.

Consider inheriting the appropriate contracts to reinforce implementation of interfaces, so that such

bugs can be caught at compile time.

•

•

[L12] Unclear behaviour of ExpiringMerkleDistributor

The ExpiringMerkleDistributor contract allows anyone to call the claim function as long as the

block.timestamp < endTime and allows the owner to call the clawBack function whenever

block.timestamp > endTime.

It is not clear whether the contract should allow users to call the claim function or allow the owner to

call the clawBack function when block.timestamp == endTime.

In order to improve correctness and consistency but also to increase completeness of the codebase,

consider specifying which is the intended behaviour in this case and change the codebase to better

represent it.

[L13] Unnecessary use of SafeMath

The majority of the smart contracts present in the code base are using a Solidity version which includes

built-in functionalities to protect from overflows.

For this reason, the battle-tested OpenZeppelin's SafeMath library is not needed anymore and no

special wrapping around require statements must be placed when performing arithmetic operations.

However, the code base is still using safe math operations to do calculations:

The Swap.sol and Unipool.sol files are using SafeMath for uint256 but contracts are

compiled using Solidity ^0.8.0.

The GovernorBravoDelegate contract is using specific functions to handle arithmetic

operations, but again the contract is compiled using Solidity ^0.8.0.

There is a SafeMath contract under the external directory that is imported in Timelock and

TreasuryVester contracts. This is because these contracts are compiled using an old Solidity

version. If those contracts were refactored to use latest Solidity version, the entire

SafeMath.sol file could be removed.

There is an important difference between the Solidity built-in functionalities and the SafeMath library in

that the built-in Solidity funcionalities use an invalid opcode to revert, consuming all the remaining gas

of the transaction, while SafeMath uses revert opcode, leaving remaining gas untouched. However to

override the built-in Solidity functionality, developers must make use of the unchecked keyword and

then use SafeMath functions as intended.

To avoid using unnecessary functions, consider removing the use of SafeMath where not needed. If gas

efficiency is important for the protocol, at the cost of added complexity, consider overriding Solidity

built-in functionality to avoid consuming all gas in a possible arithmetic overflow.

•

•

•

[L14] Zero amount can be used in withdraw function

The HuntingGround contract inherits from the StakedTokenRewardPool contract and overrides its

withdraw function.

The business logic of the overridden withdraw function in HuntingGround is different by design, hence

it does not make a call to the parent function. However, this implementation of withdraw lacks certain

checks, such as the one on the value of the passed amount input parameter, which is restricted in the

parent function. Calling the withdraw function by passing 0 amount will result in triggering of events

and wastage of gas. Within this function, consider checking that the input amount is greater than zero.

Notes & Additional Information

[N01] Erroneous docstrings and comments

Several docstrings and inline comments throughout the code base were found to be erroneous and

should be fixed. In particular:

On line 29 of GatedStakedTokenRewardPool contract, the comment if the pool is gated

should be if the pool is not gated to reflect the exact behaviour of the function to which it

refers.

On line 48 and 51 of Tally contract, informal comments are used instead of NatSpec docstrings.

On line 109 of HuntingGround contract, amountUnderlying should be amount.

On line 115 of TallyDeployer contract, + Tally token deployment should be removed since it

is actually deployed in line 99.

[N02] Erroneous test

The test case in line 408 of the SwapTests.ts file is failing.

As the test suite was left outside the audit's scope, please consider thoroughly reviewing the test suite

to make sure all tests run successfully after following the instructions in the README file.

[N03] Gas optimization

A possible gas cost improvement was found in the castVoteBySig function of the forked

GovernorBravoDelegate contract where the domainSeparator is a function of constant values and

thus can be computed once and set as a global variable in the constructor.

•

•

•

•

[N04] Inconsistent format in error messages

Error messages throughout the code base were found to be following different formats. In particular,

some messages are formatted "Contract name::function name: error message", whereas others are

not. Moreover, the error messages in GovernorBravoDelegate contract states the contract name as

"GovernorBravo" instead of "GovernorBravoDelegate".

So as to favor readability and ease debugging, consider always following a consistent format in error

messages.

[N05] Integer operations are not explicitly casted

The current lack of explicit casting when handling unsigned integer variables in the HuntingGround

contract hinders code's readability, making it more error-prone and hard to maintain.

An example of this issue can be found at calculation of withdrawal fees, where multiplication of

uint256 and uint128 is divided by uint128.

Consider explicitly casting all integer values to their expected type when sending them as parameters

of functions and events. It is advisable to review the entire codebase and apply this recommendation to

all segments of code where the issue is found.

[N06] Missing license

The Unipool.sol file contains a lot of contracts, and unlike other contract files, is missing an SPDX

license identifier. Instead it defines a MIT License docstring.

To silence compiler warnings and increase consistency across the codebase consider adding a license

identifier. While doing it consider referring to spdx.dev guidelines.

[N07] OpenZeppelin Contract's dependency is not pinned

To prevent unexpected behaviors in case breaking changes are released in future updates of the

OpenZeppelin Contracts' library, consider pinning the version of this dependency in the package.json

file.

[N08] Solidity compiler version is not pinned

Throughout the code base, consider pinning the version of the Solidity compiler to its latest stable

version. This should help prevent introducing unexpected bugs due to incompatible future releases. To

choose a specific version, developers should consider both the compiler's features needed by the

project and the list of known bugs associated with each Solidity compiler version.

[N09] Readability issues

Unnecessarily verbose parameter names

The swapByQuote and fillZrxQuote functions of the Swap contract has unnecessarily verbose

parameter names, making the code difficult to read.

It is understood that these parameters are to be aligned with the returned quote from the 0x quote API.

Given this context is understood, the "zrx" prefix for each parameter adds clutter to the code.

Consider dropping the "zrx" prefix from the names of the parameters to these functions.

Duplicated code

The swapByQuote function of the Swap contract has a 14 line code block for each of two cases.

These code blocks are identical with the exception of the boughtERC20Amount/boughtETHAmount

variables, and an ERC20 transfer.

This duplicate code makes understanding the code more difficult for stakeholders.

Consider assigning an intermediate "boughtAmount" variable depending on the two cases where the

ERC20 transfer is made in the appropriate case so that the bulk of the logic doesn't need to be

repeated.

[N10] Renaming suggestions

Good naming is one of the keys for readable code, and to make the intention of the code clear for

future changes. There are some names in the code that make it confusing, hard to understand, or could

otherwise be more precise.

Consider the following suggestions:

onlyTimelockOrEmergencyGovernance to onlyEmergencyGovernanceOrTimelock

unrestrictedAccount to account

rewardDistribution to rewardDistributor

[N11] Style suggestions

In the code base, there are some lines that may benefit from a change in the style:

There is an inconsistency in naming internal functions, where some function names start with _

and others don't.

•

•

•

•

Interfaces may benefit from being consolidated instead of being spread throughout the

codebase.

Functions that change Governance parameters like the _setVotingDelay, _setVotingPeriod,

_setProposalThreshold and _setPendingAdmin, are requiring the msg.sender to be the

admin while the TallyGovernorBravoDelegate contract is defining an onlyTimelock modifier

to restrict access to the setEmergencyGovernance contract.

Consider applying a consistent style and to review the code base trying to optimize readability through

style changes. This should improve readers understanding of the contracts.

[N12] Incomplete test suite

The unit tests provided in the code base are addressing the main pieces and functionalities of the

system but they are not complete.

For example, tests for the TreasuryVester contract are not present and tests for governance don't

include unit tests for proposal executions.

Consider reviewing the test suite and include tests for all the contracts present in the repository,

including forked code from other protocols, making sure to establish at least a 95% coverage.

Moreover, Continuous Integration systems are intended to run all unit tests of the project before

merging any changes. This prevents introducing bugs into existing code, and helps keep the repository

in a consistent tested state at all times.

Tally has no Continuous Integration setup, making it risky to introduce changes. Consider setting up a

Continuous Integration system like CircleCI to run the unit tests on every pull request. Make sure that

all tests are passing before merging any pull request.

[N13] Todo in code

In the Swap contract, there is a "TODO" comment that should be tracked in the project's issues backlog.

During development, having well described "TODO" comments will make the process of tracking and

solving them easier. Without that information, these comments might tend to rot and important

information for the security of the system might be forgotten by the time it is released to production.

These TODO comments should at least have a brief description of the task pending to do, and a link to

the corresponding issue in the project repository.

Consider updating the TODO comments to add this information. For completeness and traceability, a

signature and a timestamp can be added. For example:

// TODO: handle approval special cases like USDT, KNC, etc

// https://github.com/tallycash/tally-contracts/issues

// --mhluongo - 20210722

•

•

[N14] Indirect access of type extremae

In L310 and L311 of the Tally contract, the values 2 ** 256 - 1 and 2 ** 96 - 1 are used to

represent max values of the respective types uint256 and uint96.

As of Solidity v0.6.8, the max and min values for every integer type T can be accessed directly via the

syntax type(T).max and type(T).min.

Use of this syntax can make the code more clear and readable to stakeholders, and can reduce bugs in

implementation.

Consider accessing the extreme values of integer types directly using the type(T).max/type(T).min

syntax.

[N15] Typos

The codebase contains the following typos:

each accounts delegate should be each account's delegate.

contract mus be deployed should be contract must be deployed.

caries should be carries.

In line 201 and 210 of the HuntingGround contract, of greater should be or greater.

getRewards() should be getReward().

uses should be using.

In line 131 of the HuntingGround contract, there's an additional "to" that should be removed.

Consider correcting these typos to improve code readability.

[N16] Unnecessary code

The Tally contract is deployed by the TallyDeployer in its constructor and it is requiring the

totalSupply to be zero at construction time, but since any state variable is set to its default value if

not initialized inline, there are no other ways in which totalSupply can be zero.

Any change applied to the contract that results in an initial totalSupply different from zero, would

inherently produce a different bytecode and then a different address for the deployed contract. This

would cause a revert in line 107 of the TallyDeployer contract.

Moreover, there is also an useless instruction to set the minter to the address(0) but this is also the

default value.

•

•

•

•

•

•

•

Also, the global variables periodFinish and rewardRate of the Unipool contract are unnecessarily

initialized to be 0.

Consider removing unnecessary checks and instructions to have a cleaner and more readable

codebase, but also to avoid bugs and reduce attack surface in any future development.

[N17] Unused function

The delegateTo function of the GovernorBravoDelegator contract is not used in the codebase. This

function was previously used, in the original Compound's codebase, to be called in the constructor.

Since the constructor has been refactored, this function can be removed.

In order to improve clarity and quality of the codebase, consider removing the delegateTo function.

[N18] Unused library function

The Math library contains the following functions which are not used anywhere in the codebase

subOrZero(uint128 a, uint128 b)

subOrZero(uint64 a, uint64 b)

subOrZero(uint32 a, uint32 b)

To improve the readability of the code, consider removing any unused library functions.

[N19] Unused struct

Earning struct is defined in the HuntingGround contract but is not used anywhere in the codebase.

To improve the readability of the code and reduce its size, consider removing the unused struct.

[N20] Unused function parameters

There were instances in this codebase where function parameters appear in a function signature but

are never used within their respective function.

The account parameter of the _accountForStake function.

The staker parameter for both the postStake and the preWithdraw functions.

Consider removing these unused function parameters to avoid confusions.

•

•

•

•

•

[N21] Wrong visibility

The calculateTotalPoolEarnings function of the UnipoolHuntingGround contract is not changing

the storage of the contract.

To silence compiler warnings, improve expliciteness and readability, consider adding the view visibiility

to the function definition.

Conclusions

We are happy to see new designs being proposed into the space, however, six criticals and three high

severity issues were found, among other issues which have lower severities. Recommendations have

been proposed where possible, along with possible fixes. But where recommendations for patches were

not straight-forward, general comments have been left. We strongly recommend to the team to fix the

issues present in this report. Since such fixes will drastically change the code base, we also suggest

going through another audit when the changes are done.

